

Exploring coupled data assimilation using an idealised atmosphere-ocean model

Polly Smith, Alison Fowler, Amos Lawless

School of Mathematical and Physical Sciences, University of Reading

Problem

- Seasonal-decadal forecasting requires initialisation of coupled atmosphere-ocean models
- Current approach uses analyses generated from independent atmosphere and ocean data assimilation systems
 - ignores interactions between systems
 - > analysis states likely to be unbalanced
 - inconsistency at interface can lead to imbalance when states are combined for coupled model forecast (initialisation shock)
 - > near surface data not properly utilised, e.g. SST, scatterometer winds
- Operational centres moving towards coupled assimilation systems

To investigate some of the fundamental questions in the design of coupled atmosphere-ocean data assimilation systems within the context of an idealised strong constraint incremental 4D-Var system:

- avoids issues associated with more complex models
- allows for more sophisticated experiments than in an operational setting
- easier interpretation of results
- guide the design and implementation of coupled methods within full 3D operational scale systems

Idealised system

The system needs to be

- simple and quick to run
- able to represent realistic atmosphere-ocean coupling

Ocean

 single column KPP (K-Profile Parameterisation) mixed-layer model

Atmosphere

simplified version of the ECMWF single column model

Atmosphere

coupled via SST and surface fluxes of heat, moisture and momentum

Incremental 4D-Var

Solve iteratively

set
$$\mathbf{x}_0^{(0)} = \mathbf{x}_b$$

outer loop: for *k* = 0, ... , Nouter

compute $\mathbf{d}_{i}^{(k)} = \mathbf{y}_{i} - h(\mathbf{x}_{i}^{(k)})$, where $\mathbf{x}_{i}^{(k)} = m(t_{i}, t_{0}, \mathbf{x}_{0}^{(k)})$ inner loop: minimise

$$J^{(k)}\left(\delta \mathbf{x}_{0}^{(k)}\right) = \frac{1}{2} \left(\delta \mathbf{x}_{0}^{(k)} - \left(\mathbf{x}_{b} - \mathbf{x}_{0}^{(k)}\right)\right)^{T} \mathbf{B}^{-1} \left(\delta \mathbf{x}_{0}^{(k)} - (\mathbf{x}_{b} - \mathbf{x}_{0}^{(k)})\right) + \frac{1}{2} \sum_{i=0}^{n} \left(\mathbf{H}_{i} \delta \mathbf{x}_{i}^{(k)} - \mathbf{d}_{i}^{(k)}\right)^{T} \mathbf{R}_{i}^{-1} \left(\mathbf{H}_{i} \delta \mathbf{x}_{i}^{(k)} - \mathbf{d}_{i}^{(k)}\right)$$

subject to $\delta \mathbf{x}_i^{(k)} = \mathbf{M}(t_i, t_0, \mathbf{x}^{(k)}) \delta \mathbf{x}_0^{(k)}$

update $\mathbf{x}_{0}^{(k+1)} = \mathbf{x}_{0}^{(k)} + \delta \mathbf{x}_{0}^{(k)}$

Uncoupled incremental 4D-Var

Fully coupled incremental 4D-Var

single minimisation process:

- allows for cross-covariances between atmosphere and ocean
- requires same window length in atmosphere and ocean
- technically challenging

Weakly coupled incremental 4D-Var

separate minimisation for atmosphere and ocean:

- new technical development limited
- allows for different assimilation windows (and schemes) in ocean and atmosphere
- no explicit crosscovariances between atmosphere and ocean
- balance?

Identical twin experiments

comparison of uncoupled, weakly coupled and fully coupled systems

- 12 hour assimilation window, 3 outer loops
- data for June 2013, 188.75°E, 25°N (North West Pacific Ocean)
- 'true' initial state is coupled non-linear forecast valid at 00:00 UTC on 3rd June, with initial atmosphere state from ERA Interim and initial ocean state from Mercator Ocean
- initial background state is a perturbed non-linear model forecast valid at same time
- observations are generated by adding random Gaussian noise to true solution => operator h is linear

Identical twin experiments

- atmosphere: 3 hourly observations of temperature, u and v wind components taken at 17 of 60 levels
- ocean: 6 hourly observations of temperature, salinity, u and v currents taken at 23 of 35 levels
- no observations at initial time
- error covariance matrices **B** and **R** are diagonal
- uncoupled assimilations: 6 hourly SST/ surface fluxes from ERA interim

SST & surface fluxes

Initialisation shock

Near-surface observations

observing ocean velocity at top level of ocean model, at end of 12hr window

Coupled model forecast errors

Coupled model forecast errors

Summary

Demonstrated potential benefits of moving towards coupled data assimilation systems:

- coupled assimilation has overall positive impact on analysis and coupled model forecast errors.
- strongly coupled system generally outperforms the weakly and uncoupled systems.
- weakly coupled system is sensitive to the input parameters of the assimilation.
- coupled data assimilation is able to reduce initialisation shock.
- coupled assimilation systems enable greater use of near-surface data through generation of cross covariance information.